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The de novo approach to structure-based rational drug design can provide a powerful tool for suggestion of
entirely novel potential leads. However, programs for structure generation typically generate large numbers
of putative ligands; therefore, various heuristics (such as estimation of binding affinity and synthetic
accessibility) have to be adopted to evaluate and prune large answer sets with the goal of suggesting ligands
with high binding affinity but low structural complexity. A novel method for complexity analysis is described.
This method provides a rapid and effective ranking technique for elimination of structures with complicated
molecular motifs. This complexity analysis technique, implemented within the SPROUT de novo design
system, is based on the statistical distribution of various cyclic and acyclic topologies and atom substitution
patterns in existing drugs or commercially available starting materials. A novel feature of the technique that
distinguishes it from other published methods is that the matching takes place at various levels of abstraction,
so that it can evaluate complexity scores, even for structures which contain atoms with unspecified atom
type, which is sometimes the case with the initial output of de novo structure generation systems.

1. Introduction

The de novo approach to rational drug design provides a
powerful tool for the construction from smaller components of
entirely novel molecules that satisfy a set of user-defined
constraints, such as shape and electrostatic complementarity to
a protein binding site. Many de novo design methods are able
to suggest very large numbers of diverse putative ligands, and
tools for navigating the answer sets are used to select a limited
number of candidates for synthesis and biological testing.
Predicted binding affinity is obviously an important parameter
which is used in this context, but despite intensive research,
the currently available functions for predicting binding affinity
often perform poorly, and it would be unwise to carry out a
significant amount of synthesis just on the basis of a high
predicted binding affinity. On the other hand, much less attention
has been devoted to the development of methods for evaluation
of the synthetic accessibility of hypothetical ligands, an
important consideration, since many of the structures suggested
by de novo systems may be structurally too complex to be
worthy of further synthetic and biological studies.

A related problem concerns the selection of the most “drug-
like” compounds from a diverse set of structures. The extent of
interest in this area is reflected by the large number of published
works on this topic. (For comprehensive reviews about drug-
likeness techniques and their applications in various stages of
drug design, see refs 1-3). The methods deployed range from
simple counting methods4-5 to structural descriptor-based
analysis6 and pharmacophore point7 and functional group filter8

techniques, utilizing various computational techniques such as
decision trees,9 genetic algorithms,10 and neural networks,11-12

with the ultimate aim of classifying a compound as either drug-
like or non-drug-like.

The most frequently cited heuristic guide, devised by Lipin-
sky,4 and usually referred to as the “rule of five”, was derived
from an analysis of compounds from the WDI (World Drugs
Index) database, designed to define the requirements for
molecules to be successful as orally available drugs. It consists

of limits on the number of hydrogen bond donors and acceptors,
relative molecular weight, and lipophilicity (logP).

While the “rule of five” provides a set of pharmaceutically
and biologically relevant “global” properties expressing drug-
likeness, other methods have focused on the topological
characteristics and “local” structural features of the molecule.
For example, the CMC (Comprehensive Medicinal Chemistry)
database has been analyzed in order to identify common drug-
like frameworks,13 side-chains,14 and frequently occurring
functional groups.15

The structural features of WDI structures have also been
examined by a fragmentation program, called RECAP,16 with
the objective of extracting high quality building blocks for
combinatorial library design by exhaustively cleaving structures
into fragments by simply destroying bonds which are formed
via common chemical reactions. The MDDR (MDL Drug Data
Report) database has also been extensively analyzed in in order
to identify bioisosteres17 and local structural motifs.18

The complexity analysis method described in this study
demonstrates that analysis of local structural motifs and their
frequency of occurrence in databases of existing drugs and
starting materials can provide a clear indicator not only of
synthetic accessibility but perhaps also of drug-likeness.

1.1. Structure Generation in SPROUT.SPROUT19,20is an
interactive de novo molecular structure design program that
consists of several modules offering automatic methods for
solving a number of problems associated with structure-based
de novo design process. These include the analysis of a protein
structure to permit the identification of potential interaction sites,
the fragment-based generation of novel structures that fit steric
and electrostatic constraints, and, in the final phase, scoring and
clustering the solutions by various techniques including esti-
mated binding affinity.

The structure generation process of SPROUT involves the
construction of 3D generic molecular graphs called skeletons
which satisfy the requirements of the receptor site. This process
starts by docking molecular fragments to hydrogen bonding or
hydrophobic target sites. These target sites are small, continuous
geometric regions of space within the receptor cavity in which
potential ligand atoms can be placed to achieve favorable
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interactions between the ligand and the receptor, thereby
providing strong constraints for structure generation due to the
highly directional nature of hydrogen bonding interactions.

Fragments docked to various regions of the receptor site are
then linked together in a stepwise manner using a library of
generic and specific fragments. In this sequential building up
process, fragments are joined together in various ways such as
fusing a pair of ring bonds together, spiro joining two ring atoms,
and forming a new bond between any two fragment atoms (see
Figure 1). This structure generation exhaustively explores the
molecular search space in a deterministic manner, thereby
leading to a wide diversity of generated structures.

The utilization of some generic building blocks provides one
of the ways in which SPROUT tackles the inherent combina-
torial nature of the structure generation process, which derives
from the fact that there are a huge number of potential structures
which can be generated from combinations of even a limited
number of building blocks. While the user can easily augment
the set of building blocks used by SPROUT, there is an initial
default set, which currently contains the fragments shown in
Figure 2.

SPROUT uses the generic fragment approach to moderate
the space and the time-complexity of the problem by distin-
guishing the atoms of generic fragments by their hybridization
state alone and not by their precise atom type. By this
abstraction, a single generic fragment can be used as a surrogate
for a whole family of potential “real” fragments that have the
same connectivity and approximate geometry (see Figure 3).
In practice, the generic fragments, called templates, are con-
structed from carbon atoms using the average carbon-carbon
bond length and bond angle for the given hybridization.

Flexible fragments are represented in the library with multiple
low energy conformations to introduce some ligand flexibility
into the structure generation process (see Figure 2). Different

applications may require different fragment sets; therefore, the
program provides tools for managing the existing fragment
libraries and building new ones.

Having assembled molecular graphs that satisfy requirements
of the binding site, we can modify the structures by assigning
specific atom types to any generic atoms, whereby molecular
graphs are converted into “real” molecular structures which
fulfill the electrostatic and the hydrophobic characteristics of
the receptor. After atom substitution, the final structures can
be ranked according to their estimated binding affinity.

2. Methodology

The current version of SPROUT has been tested on a variety
of proteins and usually generates a large number of potential
ligands with high predicted binding affinity. However, as-
sembling ligands in a stepwise manner from simple building
blocks does not guarantee synthetically feasible solutions.
Therefore, it often requires a considerable amount of work by
the chemist to evaluate the synthetic feasibility of the proposed
structures or close relatives of them. Such manual evaluation
of synthetic feasibility is possible for a small to medium number
of candidates but is quite impractical for a larger answer set.
This is a general problem for structures generated by de novo
design, and a number of approaches have been explored which
aim to provide computational solutions to the problem.

CAESA19 is a rule-based expert-system which attempts to
overcome this problem by scoring and ranking the generated
structures according to an estimate of synthetic accessibility.
However, the sophisticated retrosynthetic analysis used by
CAESA means that it is relatively slow (seconds to minutes
per structure) and could be used to analyze a final answer set
within a reasonable time frame, but is not suitable for evaluating
the synthetic complexity of the many thousands of intermediate
structures generated in a SPROUT run. This ability would be
practically useful, since it would allow pruning at an early rather
than a later stage of structure generation, which is always
desirable in situations where a combinatorial explosion has to
be avoided.

In this connection, it is worth noting that pruning by synthetic
accessibility is permissible at any stage of the structure-growing
process because further growth will usually increase the
difficulty of synthesis. This is not true for pruning by estimated
binding affinity since a weakly binding part structure may
produce a strongly binding ligand after further growth.

The inspiration for the complexity analysis method presented
here comes from manual analysis of synthetic feasibility of many
de novo structures generated over the years, where it was
observed that in many cases synthetic complexity was caused
by the presence of uncommon substitution patterns in rings and
chains rather than from the presence of more obvious complex
features such as stereocenters. The method is based upon the
assumption that if a molecular structure contains only chain and
ring structural motifs which occur frequently in commercially
available starting materials or in previously (easily) synthesized

Figure 1. The three types of joining operation performed in
SPROUT: (a) the fuse join, (b) the spiro join, and (c) the new bond
join.

Figure 2. (a) Generic and (b) specific building blocks of SPROUT
(Numbers inside rings indicate the number of different conformations
of the fragment in the library).

Figure 3. The fragment generalization approach in SPROUT. A class
of geometrically similar “real” fragments can be represented by a
generic “carbon” template.
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structures, then the target structure is likely to be readily
synthesizable.

To assess the frequency of occurrence of a particular
substitution pattern, it is necessary to construct a complexity
database which is generated by enumerating the local substitu-
tion patterns found in the source compound database and
keeping counts of their frequency of occurrence. This statistical
distribution of the substitution patterns can then be utilized to
assess the synthetic accessibility (complexity) of structures
generated by any de novo design program.

One of the advantages of this “local-structure” method is that
if the source compound database comprises drug-like molecules,
then the method might provide an indication of the “drug-
likeness” of designed structures as well as their synthetic
complexity, since structures largely or wholly composed of
structural fragments from known drugs might also be “drug-
like” in character. Clearly this “concept of drug-likeness” takes
no account of global properties such as lipophilicity, and these
should be assessed by other methods.

When considering a method for complexity-based prioriti-
zation of structures generated by de novo design, it is necessary
to allow for the presence of generic atom types, i.e., the
structures subjected to complexity analysis might possess atom
types as yet undefined (Figure 4).

Accordingly the applied complexity analysis needs to be
carried out at two levels (topology level and atom substitution
level). The initial matching phase includes comparison of the
topology of substitution patterns of the generated structure
against the database of topological motifs found in drug-like
structures and is performed taking into account bond order and
atom hybridization. If there are matching topological motifs,
then atom type matching is performed at the 2nd level of the
analysis. In this second matching phase, specific atom types
can be matched only with the same atom type whereas generic
atoms can be matched against any atom type except when the
atom is docked to a hydrogen bonding target site, in which case
it can match only with atoms with the same binding properties
(such as donor or acceptor).

2.1. Preparation of the Complexity Databases.Two
separate complexity databases have been constructed for use
in the estimation of complexity of de novo designed structures.
The first one is used to quantify synthetic complexity as well
as drug-likeness and it is built by extracting local structural
motifs found in structures in the MDDR database, which
contains over 100 000 biologically relevant compounds. The

second one, which is utilized to assess just synthetic accessibil-
ity, is constructed from the combined Aldrich, Maybridge, and
Lancaster starting material databases (SM henceforth), which
together contain almost 170 000 compounds.

Because MDDR contains a wide variety of molecules, some
of which possess biological properties that are not regarded as
“drug-like” along with drugs which are still under development,
various filters are employed in order to eliminate any molecules
with non “drug-like” characteristics from the final set that
participates in the complexity database construction process.
Consequently, inclusion of structures was based on a molecular
weight range (100-700), absence of undesirable atom types,
and membership of appropriate therapeutic classes. In contrast
to other studies, structures marked as being in “Biological
Testing” phase (∼92% of the structures in the MDDR database
are labeled as being in the “Biological Testing” phase) were
not removed, as it was felt that novel but synthetically accessible
structures should not be penalized. The screening effect of the
applied filters and the number of remaining structures are
summarized in Table 1.

A similar filtering process was performed for the structures
of the combined starting material database. If a compound
occurred more than once in the united data set, then only one
instance was kept. The number of structures removed by various
filters is summarized in Table 2.

After undesirable compounds are screened out of the initial
sets, hydrogen atoms are removed from each remaining structure
along with any inorganic counterions or other residues. For the
sake of consistency, the stereo information of input structures
has to be ignored because of the large number of undefined
stereocenters present in the overall input data set. This is
followed by ring perception to determine the topology of each

Figure 4. Example of a partially substituted structure, in which generic
(indicated here as carbon) atoms can represent any atom type. (Blue
and red dotted cycles symbolize donor and acceptor binding target sites,
respectively).

Table 1. Number of Structures Eliminated from MDDR (itemized by
applied filters)

number of structures

total number of structures (initially) 113842

without 2D structural information 2676
with undesirable atom typea 864
molecular weight less than 100 66
molecular weight higher than 700 7185
without suitable therapeutic activityb 9469

total structures removedc 15673

remaining structures 95499

a Only H, Li, B, C, N, O, F, Na, Mg, P, S, Cl, K, Ca, and I atom types
are allowed.b Altogether 74 drug activity classes (with keywords such as
“Sweetener”, “Vitamin”, “Mineral”, and “Radiopharmaceutical”) are ex-
cluded from the 615 activity classes found in MDDR.c The number of the
structures removed by each filter represents the number of structures
eliminated if the filters were applied independently of each other in order
to illustrate their real pruning power independently of the order in which
they are employed.

Table 2. Number of Structures Eliminated from Combined Starting
Material Databases (Maybridge+ Aldrich + Lancaster) Itemized by
Applied Filters

number of structures

total number of structures (initially) 169550

without 2D structural information 107
with undesirable atom typea 991
identicalb 5723

total structures removed 6821

remaining structures 162729

a Only H, Li, B, C, N, O, F, Na, Mg, P, S, Cl, K, Ca, Br and I atom
types are allowed.b Starting materials are considered identical if they differ
only in salt counter ion or stereo configuration.
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structure and detect rings (up to nine-membered), and by atom
perception to assign essential properties (such as hybridization,
aromaticity, number of attached hydrogens, and binding proper-
ties (acceptor, donor, both, neither)) for each atom.

In the next step, the complexity database is constructed by
exhaustive and systematic enumeration of acyclic and cyclic
substructures (i.e., patterns) present in each molecule (see
example in Figure 5). The various types of analyzed patterns
are defined as follows:

1-Centered Chain Pattern. Any nonterminal chain atom
with its nearest heavy atom neighbors. There are six such
patterns in the example structure (Figure 5).

2-, 3-, and 4-Centered Chain Pattern.Any 2, 3, or 4
adjacent nonterminal chain atoms with their nearest heavy atom
neighbors. (The 1-, 2-, -3-, and 4-centered local structural
concept is adopted from ref 18; however, in our method they
are used only for acyclic portions of the examined structure).

Ring Pattern. Contiguous atoms participating in a ring or
ring system. Fused, spiro, and bridged ring combinations are
considered as one coherent unit.

Ring Substitution Pattern. Ring atoms together with their
immediate bonded neighbors. This pattern type is particularly
useful for estimation of synthetic accessibility since many ring
substitutions occur quite infrequently. (See the frequency of
occurrences of various side-chain substitutions of naphthalene
in Table 3.)

The total number of substructural motifs (unique topologies,
atom substitution patterns) for the MDDR and the starting
material dataset are summarized in Table 4.

The efficient use of these large numbers of ring and chain
motifs in complexity analysis requires a highly efficient
procedure for exact structure matching. Canonical names which
unambiguously encode molecular structures independently from
their atom numbering are routinely used in chemoinformatics
for exact structure matching. In our case, canonical topology
names are constructed from the perceived hybridization of the
substitution pattern atoms and the types of bond connecting
them. The algorithm for canonical name generation was
implemented by customizing the original Morgan algorithm21

and SEMA22 variant. By these means, the computationally
expensive atom-by-atom matching required to determine equiva-
lent topology is replaced by rapid string comparison.

For ease of search, the complexity database is implemented
in the form of a set of hierarchies. Each detected topological
graph (with an associated canonical topology name) corresponds
to an atom substitution hierarchy (Figure 6). In the hierarchy,
each node represents a unique atom substitution pattern for the
given topology along with a counter that stores its frequency
of occurrence. The hierarchy is constructed in such a way that
the most generic atom substitution is located at the root of the
hierarchy and more specific atom substitutions (i.e., patterns
with more heteroatoms) are found by navigating deeper into
the hierarchy.

The hierarchies associated with the topological graphs expand
as more and more patterns are found during the complexity
database construction. If a new heteroatom substitution pattern
occurs for a topology, then a new node is inserted into the
corresponding hierarchy by introducing relationships between
the new node and the existing ones. If the atom substitution
pattern is already present in the hierarchy, then the occurrence
counter of the appropriate node is incremented.

Analysis of the retrieved patterns reveals structural differences
between the MDDR and SM databases. Figure 7 illustrates the
correlation between the frequency of occurrence of specific rings
found in MDDR and their frequency of occurrence in the starting
materials database. From the 7388 various ring substitution
patterns, 2309 are not present in the MDDR and 4048 are
missing from the SM. Figure 7 also depicts some ring motifs
that are present in MDDR with high frequency, but absent or
occur only once in SM, and vice versa.

Figure 5. Example of the enumeration process to obtain chain and
ring patterns (The centers of the chain patterns are highlighted by blue
cycles).

Table 3. The 10 Most Frequent Substitution Patterns of Naphthalene in
MDDR with the Frequency of Their Occurrences

Table 4. Number of Overall and Unique Enumerated Topologies and Atom Substitution Patterns in the Filtered MDDR and Combined Starting Material
(Maybridge+ Aldrich + Lancaster) Databases

MDDR SM MDDR + SM

TOa UTb USc TOa UTb USc TOa UTb USc

1-centered chain 619682 144 937 752856 185 1359 1372538 202 1559
2-centered chain 424218 659 3524 457727 801 4453 818945 927 5942
3-centered chain 338982 2392 9108 303738 2609 9059 642720 3498 14796
4-centered chain 291357 5918 16931 208207 5454 12646 499564 8891 25862

ring systems 233572 2689 5085 360683 1853 3340 594255 3895 7388
ring subs 233572 14987 25926 360683 10270 19212 594255 22565 41047

a TO ) Overall total occurrences of enumerated patterns.b UT ) Number of unique topologies (considering hybridization, connectivity, and bond order).
c US ) Number of unique substitution patterns.
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Figure 8 shows the relative frequency of rings in MDDR and
SM databases in percentages. For the sake of clarity, two rings
which occur significantly more frequently than any other ring
in both MDDR and SM have been omitted from Figure 8. These
are benzene which represents 38.23% of the ring types in
MDDR and 55.01% in the SM, and pyridine which represents
4.14% of the rings in MDDR and 3.24% in SM.

2.2. Estimating Structural Complexity. After the two
complexity databases are constructed, they are used to score
the drug-likeness and synthetic complexity of structures gener-
ated by SPROUT (or any other de novo design method). The
complexity scoring system which has been adopted is designed
to penalize structural motifs that are infrequent or absent from
the complexity database.

The hierarchical architecture of the constructed database is
designed to facilitate rapid multilevel complexity analysis. By
this means, the first investigation takes place at the topology

Figure 6. Example for the atom substitution hierarchy. The number next to structure indicates its frequency of occurrence in the screened MDDR.
The most common atom substitution is in the red box. For the sake of clarity and simplicity, only 19 atom substitution patterns out of 64 found are
depicted in the hierarchy. These occur more than 10 times and contain only C, O, N, S, or Cl atoms. The structure in the blue box represents the
topology associated with the hierarchy. (sp2, sp3, and A indicate atom hybridization and aromatic atom type, respectively.)

Figure 7. Frequency of occurrences of ring motifs (considering atom
types and hybridization) found in MDDR versus ring motifs of SM.

Figure 8. Relative frequency of ring motifs in percentages (considering atom types and hybridization) found in MDDR versus ring motifs of SM.
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level, while on the second level the probability of heteroatom
substitutions are examined.

The process starts by retrieving all chain and ring patterns
of the de novo designed structure, in the previously detailed
manner (Figure 5). The canonical topology names of the
obtained substructures are then matched against the set of
topologies stored in the complexity database. If the topology is
present in the database, then a topology score is calculated using
empirically derived equation 1 which considers the correlation
of its frequency of occurrences with the occurrences of the most
frequent topology for the given pattern type i.e., ring or chain.

The penalty values used in the examples presented here are
25, 20, 15, and 10 for 1-, 2-, 3-, and 4-centered chain patterns,
and 40 and 30 for rings and ring substitutions. These are not
immutable constant values, and the user can alter the penalty
values for individual pattern types in order to tailor the system
for different applications. The current set of penalty values was
derived by a process of trial and error and incorporates the
heuristic that setting higher penalty values for smaller patterns
emphasizes their importance.

Figure 9 itemizes the complexity score calculation for the
cephalexin. In the table, each line represents an enumerated ring
or chain pattern which contributes to the complexity analysis.
The atom numbers in the table correspond to the atom
numbering in the structural diagram on the right. The table
details how many times each topology and atom substitution
pattern occurs in the database and the partial score generated
for the given pattern. This example shows that the 8th pattern
(benzene ring) is the most frequent ring in the MDDR and
therefore is not penalized. The topology of the fused ring (9th),
however, occurs only 1537 times in the database; therefore, it
increases the overall complexity of the structure.

If the topology is found in the database, then the second level
of the analysis is performed to establish the frequency of the
appropriate heteroatom substitution. This process involves
traversing through the atom substitution hierarchy of the

topology and identifying adequate atom substitution pattern(s)
(Figure 6). The program is designed to perform two types of
atom matching:

Exact matching finds the exact atom substitution pattern, if
it is present, in the hierarchy of the topology.

Generic matching is implemented for partially substituted
SPROUT structures. Generic atoms can be matched with any
atom type. If a binding property (such as acceptor, donor) is
defined for an atom, then it can match only with atoms
exhibiting the same property.

In the latter matching mode, if there is more than one
corresponding substitution pattern, then the one with the highest
occurrence is used to calculate the atom substitution score
(equation 2).

In case of the cephalexin example (Figure 9), there are quite
a few chain (such as 2nd, 3rd, 4th, and 6th) and ring (8th, 9th,
10th, and 11th) substitution patterns which are the most common
ones for the given topology. (Only exact atom matching is
performed since this is not a de novo designed ligand.)

The total complexity score (Equation 3) is a normalized score
which is composed of the individual topology and atom
substitution scores divided by the number of patterns. In the

Figure 9. Example of complexity score calculation for cephalexin The scores are calculated by using the complexity database generated from
MDDR. (Only exact atom type matching performed since this is not a de novo designed structure).

Table 5. Number of Enumerated Patterns of the 50 Top-Selling Drugs
with the Number of Absent Topologies and Heteroatom Substitutions
(itemized by pattern types)

number of
patterns

number of
absent topology

number of
absent atom substitution

1-centered chain 273 0 0
2-centered chain 186 0 2
3-centered chain 144 3 5
4-centered chain 123 6 9

ring systems 97 0 0
ring substitutions 97 3 6
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Table 6. The 50 Top-Selling Drugs Ranked by Descending Order of Their Complexity Scorea
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cephalexin example, shown in Figure 9, the total normalized
score is 6.301.

The system also allows the user to invoke penalties for the
presence of perceived stereo centers (Ps) and rotatable bonds
(Prb) which also contribute to poor synthetic accessibility and
lower entropy of the structure, respectively.

3. Results and Discussion

The performance of the complexity analysis technique
detailed above has been investigated by applying it to 50 top
selling (nonsteroid) drugs.23 All of the test drug structures were
removed from the MDDR (the generic names of the drug
structures are utilized to identify them in the MDDR database),
and then a new validation complexity database was constructed
from the limited set (using the previously detailed process). This
was followed by the calculation of complexity score of each of

the 50 drug structures. In this process only exact atom type
matching was performed.

Table 5 summarizes the details of the study. Analysis of the
results indicates that the method successfully identifies high
percentages of topologies and heteroatom substitutions. The
distribution of the scores is shown in Figure 10. The molecular
structures of the analyzed drugs together with their generic
names and their complexity scores are presented in Table 6.

Table 6 (Continued)

a Red highlights topologies and yellow cycles indicates heteroatom substitutions that are not present in the complexity database generated from MDDR.

Figure 10. The distribution of the estimated drug-likeness of 50 top
selling drugs.

Table 7. The 50 Top-Selling Drugs Ranked by Ascending Order of
Their CAESA Prediction Together with the Complexity Score

INa drugs CPb CSc INa drugs CPb CSc

32 Azithromycin 10% 54.53 36 Cetirizine 66% 10.51
43 Pravastatin 16% 30.74 18 Esomeprazole 66% 14.76
29 Simvastatin 24% 38.0 59 Clonazepam 67% 12.95
1 Hydrocodone 25% 101.52 28 Amoxicillin 68% 30.31
38 Ramipril 32% 24.02 37 Amlodipine 69% 8.52
41 Quinapril 43% 15.40 16 Clopidogrel 69% 24.88
12 Levofloxacin 45% 19.59 50 Salmeterol 69% 6.96
44 Atorvastatin 46% 17.68 34 Albuterol 71% 12.17
33 Cephalexin 47% 19.14 46 Metoprolol 72% 8.41
20 Sildenafil 47% 26.19 23 Lansoprazole 73% 12.71
4 Propoxyphene 49% 29.16 7 Bupropion 73% 20.03
13 Alprazolam 51% 70.12 22 Fluconazole 74% 25.08
3 Sertraline 51% 35.99 26 Alendronate 80% 27.56
48 Lisinopril 52% 14.90 19 Paroxetine 83% 21.62
30 Montelukast 52% 18.89 49 Acetaminophen 83% 2.01
10 Citalopram 55% 17.07 5 Rofecoxib 87% 23.09
39 Valsartan 55% 18.03 21 Ranitidine 94% 15.80
17 Pantoprazole 57% 12.02 35 Gabapentin 95% 7.62
6 Lorazepam 59% 17.26 14 Furosemide 96% 13.12
27 Celecoxib 60% 5.73 11 Levothyroxine 100% 12.20
2 Hydrochloro-

thiazide
61% 26.93 47 Atenolol 100% 7.78

25 Zolpidem 61% 16.16 40 Ibuprofen 100% 7.79
31 Venlafaxine 62% 13.56 8 Triamterene 100% 17.56
45 Fexofenadine 64% 11.24 15 Metformin 100% 10.35
42 Fluoxetine 65% 15.75 24 Amitriptyline 100% 19.06

a IN ) Index of the structure in Table 6.b CP ) CAESA prediction of
synthetic accessibility.c CA ) Complexity analysis score using SM
complexity database.
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The explanation for the surprisingly low score of azithromycin
is that the program detects rings only up to nine-membered;
therefore, the macrocyclic ring of the structure is matched
against chain patterns rather than rings. Of the high scoring
compounds, hydrocodone (1) has a genuinely complex structure.
On the other hand, hydrochlorothiazide (2) is given a high score
because of the unusual fused ring combination. The system does
not currently recognize that retrosynthetic cleavage of the
heterocyclic ring present would give a much simpler structure.

To validate the performance of the method as a predictor of
synthetic accessibility, a comparison of these scores with
CAESA predictions for the same set of compounds was carried
out. CAESA19 is an expert system-based program that is
designed to estimate synthetic accessibility of individual
members of a series of hypothetical drug candidates by
performing a comprehensive retrosynthetic analysis, establishing
synthetic routes between available starting material compounds
and the target structure and also examining structural features,
such as topology, stereochemistry, and functional groups
contained within the structure that give rise to synthetic difficulty
or complexity.

Complexity scores for these 50 drugs were calculated utilizing
the complexity database constructed from just the starting
material catalogues since the comparison only involved synthetic
accessibility. In this process, exact atom type matching was
performed again with a penalty value of 2.0 added to the total
complexity score for each identified stereocenter in the structure.

The latter was introduced in order to compensate for the fact
that stereochemistry had been ignored when the complexity
database was constructed.

The CAESA predictions for synthetic accessibility and the
complexity analysis scores for the top-selling drugs are detailed
in Table 7. CAESA evaluates the synthetic accessibility in
percentages i.e., the lower the percentages the more complex
the structure. 100% indicates that the compound is commercially
available.

Even though compared to CAESA the complexity analysis
is a crude method for predicting synthetic accessibility, the
analysis of the results reveals a surprisingly high correlation
between the CAESA predictions and complexity analysis scores.
Figure 11 displays the results and highlights the five most
complex structures of the drug set according to CAESA.

Furthermore, the complexity analysis operates significantly
faster than CAESA. The CAESA calculation took 703 s,
whereas the elapsed time of loading the entirely complexity
database into the memory and calculating the complexity scores
were carried out in 8 s. Accordingly, the current method is more
suitable for prioritization of thousands of structures within a
reasonable time frame and provides an acceptable compromise
between the speed of the analysis and the accuracy of calculated
scores.

After validation of our method by analyzing its performance
to predict complexity of known drugs, the technique was utilized
to evaluate the complexity of structures constructed by a de

Figure 11. CAESA prediction of synthetic accessibility versus score calculated by complexity analysis. The black line indicates the linear trendline.

Figure 12. The key interaction region of 1D3G with the brequinar analogue: (a) the schematic representation of the complex; (b) snapshot of the
inhibitor in the binding pocket.
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novo design process. First, potential inhibitors were generated
by SPROUT for the enzyme dihydroorotate dehydrogenase, the
P. falciparumvariant of which is an attractive target for the
development of new antimalarial drugs.24

The de novo drug design process of SPROUT starts with
importing the human variant of the enzyme complexed with a
potent inhibitor, brequinar (PDB code 1D3G) into the SPROUT
system (Figure 12), followed by the identification of hydro-
phobic regions and hydrogen bonding interaction sites.

In the next step, small fragments are docked to each selected
target site followed by the structure generation phase which
involves connecting the already anchored fragments together
in a sequential building up process using both generic and
specific building blocks in order to generate a diverse set of
solutions.

The numbers of docked fragments and the steps of the
structure generation are shown in Figure 13. A total of 60 712
structures, which satisfy all of the selected target sites and the
boundary constraint, were generated. These structures were then
subjected to both the binding affinity and structural complexity
estimation procedures. In the process of complexity analysis,
generic atom type matching was performed using a combined
complexity database of MDDR and SM. Figure 14 and Figure
15 show the distribution of binding and complexity scores of
the generated structures, respectively.

According to the complexity analysis, only 5718 of the 60 712
structures (9.42% of the generated ones) have all their structural
topology matched in the complexity database and only 495
structures (0.82%) with matching substitution patterns also.
Figure 16 and Figure 17 depict structures with high and low
complexity scores, respectively.

The user of the system has to make a judgment of where to
apply a cutoff when using this complexity analysis. In this
particular example a cutoff value of 20 would seem reasonable
and would allow 87% of the answer set to be discarded (Figure
15).

Figure 13. The connection of the selected target sites. Arrows indicate
the steps of the connection. Numbers in boxes show the number of
partial and final structures.

Figure 14. The distribution of the estimated binding affinity of the
molecules generated.

Figure 15. The distribution of complexity score of the molecules
generated (red and yellow color indicate structures with topology or
atom substitution problem(s), respectively. The green color represents
structures for which every enumerated topology and substitution pattern
in the examined structure is present in the complexity database.

Figure 16. Examples of structures with high complexity scores (red
color highlights topologies and yellow cycles indicate heteroatom
substitutions that are absent in the used complexity database).

Figure 17. Examples of structures with low complexity scores (blue
and red dashed cycles symbolize donor and acceptor binding interaction
sites, respectively).
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In this example 1000-1200 structures (depending on size)
were analyzed per minute on a 2.8 GHz Linux PC, which
provides an indication of the efficiency of the process and a
justification for the use of rapid topological name matching and
the hierarchical structure of the complexity database.

4. Conclusion

A novel method for complexity analysis is described. This
method matches structural motifs present in de novo generated
structures against those found in compounds of drugs/starting
materials databases and provides a quantitative structural
complexity measure that can be used for prioritisation.

However, it should be emphasized that that there is a potential
problem with any method which uses databases of existing
structures, in that these compounds have not exhausted all
possible local structural motifs. Therefore, structures with novel
(but synthetically accessible) structural features may be incor-
rectly penalized as being complex. One way to ameliorate this
problem would be to use a very large database, such as the
Chemical Abstracts Registry file, as the data source.

The method described here can also be utilized in the reverse
sense, for the analysis of catalogues of external suppliers in
order to identify structures with novel structural motifs, the
inclusion of which could enhance the chemical diversity of in-
house databases.
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